Arabic Handwritten Digit Recognition Based on Restricted Boltzmann Machine and Convolutional Neural Networks

نویسنده

  • Ali A. Alani
چکیده

Handwritten digit recognition is an open problem in computer vision and pattern recognition, and solving this problem has elicited increasing interest. The main challenge of this problem is the design of an efficient method that can recognize the handwritten digits that are submitted by the user via digital devices. Numerous studies have been proposed in the past and in recent years to improve handwritten digit recognition in various languages. Research on handwritten digit recognition in Arabic is limited. At present, deep learning algorithms are extremely popular in computer vision and are used to solve and address important problems, such as image classification, natural language processing, and speech recognition, to provide computers with sensory capabilities that reach the ability of humans. In this study, we propose a new approach for Arabic handwritten digit recognition by use of restricted Boltzmann machine (RBM) and convolutional neural network (CNN) deep learning algorithms. In particular, we propose an Arabic handwritten digit recognition approach that works in two phases. First, we use the RBM, which is a deep learning technique that can extract highly useful features from raw data, and which has been utilized in several classification problems as a feature extraction technique in the feature extraction phase. Then, the extracted features are fed to an efficient CNN architecture with a deep supervised learning architecture for the training and testing process. In the experiment, we used the CMATERDB 3.3.1 Arabic handwritten digit dataset for training and testing the proposed method. Experimental results show that the proposed method significantly improves the accuracy rate, with accuracy reaching 98.59%. Finally, comparison of our results with those of other studies on the CMATERDB 3.3.1 Arabic handwritten digit dataset shows that our approach achieves the highest accuracy rate.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Massively Deep Artificial Neural Networks for Handwritten Digit Recognition

Greedy Restrictive Boltzmann Machines yield an fairly low 0.72% error rate on the famous MNIST database of handwritten digits. All that was required to achieve this result was a high number of hidden layers consisting of many neurons, and a graphics card to greatly speed up the rate of learning. Keywords—ANN (Artificial Neural Networks), RBM (Restrictive Boltzmann Machine), MNIST handwritten da...

متن کامل

Convolutional Restricted Boltzmann Machines for Feature Learning

In this thesis, we present a method for learning problem-specific hierarchical features specialized for vision applications. Recently, a greedy layerwise learning mechanism has been proposed for tuning parameters of fully connected hierarchical networks. This approach views layers of a network as Restricted Boltzmann Machines (RBM), and trains them separately from the bottom layer upwards. We d...

متن کامل

Handwritten Bangla Digit Recognition Using Deep Learning

In spite of the advances in pattern recognition technology, Handwritten Bangla Character Recognition (HBCR) (such as alpha-numeric and special characters) remains largely unsolved due to the presence of many perplexing characters and excessive cursive in Bangla handwriting. Even the best existing recognizers do not lead to satisfactory performance for practical applications. To improve the perf...

متن کامل

Persian Handwritten Digit Recognition Using Particle Swarm Probabilistic Neural Network

Handwritten digit recognition can be categorized as a classification problem. Probabilistic Neural Network (PNN) is one of the most effective and useful classifiers, which works based on Bayesian rule. In this paper, in order to recognize Persian (Farsi) handwritten digit recognition, a combination of intelligent clustering method and PNN has been utilized. Hoda database, which includes 80000 P...

متن کامل

A hybrid EEG-based emotion recognition approach using Wavelet Convolutional Neural Networks (WCNN) and support vector machine

Nowadays, deep learning and convolutional neural networks (CNNs) have become widespread tools in many biomedical engineering studies. CNN is an end-to-end tool which makes processing procedure integrated, but in some situations, this processing tool requires to be fused with machine learning methods to be more accurate. In this paper, a hybrid approach based on deep features extracted from Wave...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Information

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2017